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1 Introduction

Recent attacks (e.g. Stagefright [7], BadUSB [15], Zeus/ZitMo trojan [11]) show
that it is challenging to defend a system and even more difficult to guarantee the
honesty of a system.

We propose a new technique, malware tolerance, to deal with sophisticated at-
tacks. Our idea is that a system of multiple components can distribute trust over
these components in such a way that the individual component cannot meaning-
fully tamper with the resources. [4, 5]

The parts of a malware tolerant system should be as independent as possible to
avoid an attacker gaining control over multiple components at the same time. Thus,
separate devices of different type are more suitable than integrated hardware.

The components should be able to hold security credentials and have to have some
basic protection, but, since one compromised part does not render the whole sys-
tem vulnerable, they do not need to be ultimately trustworthy. In this sense, the
components only need to be “semi” trusted.

We already identified a few semi trusted devices that are suited for malware tol-
erance: Smart-cards, security tokens as used in online banking, a special USB-
stick [16], and integrated Trusted Execution Environments (TEEs) like the Trusted
Platform Module (TPM), Intel Software Guard Extensions (SGX), and TrustZone.

TrustZone splits the system into two worlds, the normal world and the secure
world. This separation of worlds matches the idea of malware tolerance and makes
TrustZone a suitable technology (see also Chapter 3.2).

2 Scenarios

In order to explore malware tolerance, we focused on a few scenarios which we will
explain in the following sections. In brief, the scenarios are (1) protecting assets of
a company, (2) malware tolerant password authentication, and (3) malware tolerant
messaging.

2.1 Protecting Company Assets

Malware tolerance is aimed at more sophisticated threats, which commonly attack
more valuable targets like company infrastructures. We assume that parts of the
internal network are already in control of an adversary but want to protect the
assets of the enterprise – e.g. company secrets, customer data, production lines,
and control systems.
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We will now introduce two different scenarios in connection with company assets:

1. Protecting Industrial Control Systems (ICSs)
2. Secure data storage

2.1.1 Protecting Industrial Control Systems

In this chapter we focus on companies which produce goods (e.g. chemical in-
dustry, automotive industry, and food industry) or manage an architecture (public
transport companies, water/gas suppliers, and power plants). In other words, this
section is about companies that utilise an Industrial Control System (ICS).

Industrial Control Systems are computers that supervise other computers, ma-
chines, and manufacturing. Usually, a special kind of computer, a so-called
Programmable Logic Controller (PLC), is controlling network cells or machines.
PLCs can be organised in a centralised or distributed manner. The former is called
Supervisory Control and Data Acquisition (SCADA) architecture while the latter
is named Distributed Control System (DCS). These systems are difficult to de-
fend because ICSs adopt the standard computer architecture but lack security solu-
tions. [19] For example, ICSs support TCP/IP but do not run a firewall or antivirus.

As Stuxnet [12] shows, adversaries already target such systems with Advanced
Persistent Threats (APTs). Hutchins et al. [9] classified these attacks into seven
steps:

1. Reconnaissance
2. Weaponisation
3. Delivery
4. Exploitation
5. Installation
6. Command & Control
7. Actions on the objectives

In general, malware tolerance is applicable in steps 4 to 7. The first two steps take
place mostly on the attackers machine which we cannot influence. Delivery refers
to the action of sending the exploit which we could reject but we hardly have any
information about the content at that point. The classification of the content will
rather happen shortly before step 4. Therefore, we can interfere with steps 4 to 7.

Scenario

Since we assumed that some parts of the company network (i.e. some clients and/or
servers) are already infected, step 5 took place. The attacker would now try to
explore the network and compromise valuable targets like PLCs. Thus, we can
interfere with the steps Command & Control and Actions on the objectives on the
network in order to prevent Exploitation or later steps on the PLCs.

2
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That means, there are two points at which we could defend the ongoing attack
(see Fig. 1). Preferably, the attack should be prevented as early as possible, thus,
interaction from the infected machine should be controlled (marked with 1. in
Fig. 1).

Figure 1: Assets in the Network of a Company

An adversary will target certain resources in the network of a company (orange) starting from a

compromised system (red). We could interfere with (1) Command & Control of the compromised

system or (2) Exploitation of the resources (here: PLCs).

Both interactions from the adversary, i.e. Command & Control and Actions on
the objectives, rely on sending commands to the network. Consequently, our goal
is to prevent an adversary with control of the computer from forging or changing
commands while enabling an authorised user to still work with the system.

In other words, we need to distinguish between commands from a user and com-
mands from malware.

Idea

To defend PLCs from attacks, we want to guard them by another device or a proxy,
as PLCs usually lack defence mechanisms. Essentially, we move the attack point
from the PLC to the proxy with the difference that the proxy is able to defend
itself, unlike a PLC. The proxy could be a dedicated device or integrated into a
device which is already in place. Two architectures are imaginable: one proxy
shielding one (Fig. 2) or multiple (Fig. 3) PLCs behind it. To protect multiple PLC
the network needs to be segregated into zones.

3
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Figure 2: PLC-Proxy Setup 1-on-1

Figure 3: PLC-Proxy Setup 1-on-N

To defend PLCs, the proxy must intercept all commands being sent to the PLCs
and check their authenticity. For this purpose, we will cryptographically sign all
commands to the PLCs with Smart-Guard (see Chapters 3.1 and 3.1.1).

This might affect the performance of commands but since ICSs usually manage
themselves autonomously commands should happen infrequently. Considering for
example an automotive manufacturer with PLCs to control production lines. Com-
mon commands could be start conveyor belt when starting to work and stop con-
veyor belt at the end of a working day. This would even tolerate delays of a few
seconds.

4



Michael Denzel September 18, 2015

It is also possible to generally allow certain commands without authentication at
the cost of security for these special commands, e.g. for a status request or an
emergency stop for the mentioned conveyor belt. Special care has to be taken to
avoid denial of service attacks.

Improvements: Defending the ICS Proxy

The proxy architecture will only shift the attack point from the PLC to the proxy.
This already improves security because, in contrast to a PLC, the proxy is able to
defend itself with e.g. anti-virus, firewall, and Host Intrusion Detection System
(HIDS). We would like to improve this architecture to be malware tolerant, too.

Unfortunately, malware tolerance with multiple devices seems impossible: Since
a simple PLC does not have any defensive mechanisms, an adversary controlling
the channel to this device is in full control over it. That means, all end points
to this channel need to be secure. Consequently, malware tolerance is impossible
for the channel as one malicious device is enough to compromise the channel and
the PLC. Additional devices cannot improve security, in fact they rather lower it.
Integrated hardware in the end points can be used to create a one device malware
tolerant approach which is weaker than multiple devices.

We will experiment with integrated hardware like TrustZone (see also Chapter 3.2)
to harden the proxy architecture. The secure world of TrustZone could encapsulate
the network card. Incoming traffic is forwarded to the normal world which veri-
fies signatures of commands. The verification itself could be done truly malware
tolerant using e.g. a smart SD-card. However, single point of failure will remain
the secure world because it controls the network card and the channel to the PLC.
As the informal discussion above shows, improvements to this situation are only
possible by adding cryptographic capabilities to the PLC itself.

Additional security could be achieved by testing commands in a sandbox or a
shadow honeypot [1] in the normal world after verifying the signature. Instead
of preventing the commands of the adversary, this would interfere with the Ex-
ploitation step on (or shortly before) the PLC.

Such a proxy is also applicable in other scenarios as e.g. smart-homes.

2.1.2 Securing Company Data

Information theft is a more general threat to companies compared to security of
ICSs. Company secrets, passwords, and customer data must be stored in a secure
place even during attacks on network and servers. To be malware tolerant, the stor-
age servers have to provide security despite compromised administrator accounts,
infected clients machines, or compromised encryption keys.

Data that is not currently in transit could be encrypted with a distributed key. De-
cryption would involve Multi-Party Computation (MPC) which distributes trust
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over several devices such as an access control server of the company, smart-cards,
or integrated TEEs in the PCs.

We need to classify access rights for data items into several groups which can
be achieved with Key-Policy Attribute-based Encryption (KP-ABE). The idea of
KP-ABE is that certain, pre-defined attributes are assigned to each data item and
decryption keys are derived from attributes. That means in order to decrypt data
the recipient must have these attributes.

The contribution would be to implement Attribute-based Encryption (ABE) in
a distributed way. We are looking for a combination of mediated cryptography
(e.g. mRSA[2]) and KP-ABE. A possibility could be mediated Ciphertext-Policy
Attribute-based Encryption (mCP-ABE) [10].

A scenario is a company network with e.g. customer data and configuration files
for their web server. Sales assistants need access to customer data, while web
developers should be able to configure the web server. Administrators need to have
access to both.

Defining the attributes sales, web, and admin, we could tag the storage like this:

• customer data→ sales ∨ admin
• web server→ web ∨ admin

Keys should be mediated, that means every party only holds a share of the key. The
other one is on a key-server or similar. An imaginable approach would be:

• Sales persons and web developers have a share on their working computer
while the other half is stored on an access server of the company.
• Administrators have three shares: on their computer, on the access server,

and on a smart-card.

For every access, all shares are needed to decrypt the data. An adversary would
have to collect every share of a key to attack the corresponding part of the system.

An access policy for the web server could look like the following:

(web developer key∧server key)∨(administrator key∧server key∧smart-card key)

2.2 Password Authentication

Password authentication delivers a short secret string to a recipient without en-
abling replays or revealing the plaintext at any stage. Malware tolerance also con-
siders attacks of the involved components like the keyboard, PC, or potential key-
loggers. As a result, keystrokes need to be protected during transit to prevent ex-
filtration. Outgoing texts need to be encrypted and verified by at least two compo-
nents. Since verification needs the plaintext, the two verifying components should
have limited access to communication channels with external devices (e.g. inter-
net). A modified version of Smart-Guard would be applicable (see Chapter 3.1.3).
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2.3 Messaging and E-mail

When sending a message to another party, it should be confidential and authenti-
cated. There are many encryption schemes to secure a message during transit over
the network. We will look at the security of the end-points, since an attacker is able
to retrieve the plaintext of the message when controlling the computers of sender
or recipient.

Malware tolerance could improve the security of the end-points by including fur-
ther components in the computations.

On the sender side, the additional components would enforce encryption of the
messages and reject signing spoofed messages. Notice that, since we assume the
adversary is already in control of the computer, we cannot prevent him or her from
sending (unauthenticated) spoofed messages. However, the recipient is able to
identify them easily by their missing or invalid signature.

For the recipient, a malware tolerant approach could prevent decryption of the mes-
sage if one component disagrees. Moving decryption from untrustworthy compo-
nents to semi trusted ones would secure confidentiality even further.

3 Progress

3.1 Smart-Guard

Smart-Guard protects user keystrokes from the input event to a recipient (e.g. a
TEE or a third party). Protecting user input in such a way is referred to as trusted
input in literature. It is part of trusted I/O and belongs to the domain of trusted
execution.

We achieve this by signing and encrypting the keystrokes of a user with a system
of three components: a keyboard, a smart-card, and a PC. Our contribution is a
protocol that protects against hardware keyloggers and even tolerates attacks of its
own components up to a certain point.

In brief, keyboard and smart-card create a shared signature using mRSA [2] and a
shared ciphertext with Diffie-Hellman plus a verification step. For example, key-
board and smart-card could produce a shared PGP e-mail.

The whole protocol becomes malware tolerant by the fact that keyboard and smart-
card both have to agree to create a message while the PC is preventing any of the
two devices to connect to the internet directly to leak plaintext. Keyboard and
smart-card only communicate via an encrypted channel to remove the PC from the
trusted base. This way, we split the system into two zones: one zone with external
communication channels (PC) and another zone with plaintext data but without
external communication channels (keyboard and smart-card).
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Figure 4: Trust Model for Smart-Guard

The “keyboard trusted” circle represents the cases in which the keyboard is trusted, and similarly
for the other two circles. Thus, the very centre of the diagram means that all devices are trusted.
The intersection between keyboard and computer without smart-card refers to an untrusted
smart-card with trusted keyboard and trusted computer.

Grey area: protocol satisfies confidentiality (Fig. 4a) or integrity (Fig. 4b).

Dotted area: protocol defends against hardware keyloggers.

everything untrusted

keyboardkeyboard
trustedtrusted

smart-cardsmart-card
trustedtrusted

computercomputer
trustedtrusted

(a) Confidentiality

everything untrusted

keyboardkeyboard
trustedtrusted

smart-cardsmart-card
trustedtrusted

computercomputer
trustedtrusted

(b) Integrity

We formally verified Smart-Guard using ProVerif, a state-of-the-art protocol ver-
ifier. Figure 4a and 4b show the results of our proofs. As we can see, integrity
is better protected than confidentiality. The reason is that integrity only requires
one honest device, while confidentiality is compromised by one malicious device
leaking the plaintext.

Main problem of Smart-Guard is that, since it lacks trusted output, it relies on other
techniques to provide this (e.g. trusted output of Zhou et al. [21]). We will intro-
duce possibilities on how to improve or adjust with Smart-Guard in the following
chapters.

3.1.1 Confidential Output

To improve Smart-Guard, we need to solve the issue of displaying data securely.
As Smart-Guard already takes care of integrity, all we need is confidential output
– in contrast to (full) trusted output. Even if an attacker modifies the output, the
stored input and the produced signature will not change. In addition, a user will
immediately notice when the input does not match the output. That is why, output
only needs to be confidential.

For any form of trusted path, the end points need to hold security credentials. While
encryption-capable keyboards exist, encryption-capable screens are not available at
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the moment. A possibility to improve Smart-Guard is to simulate this encryption-
capable screen with a development board (e.g. a raspberry pi) between PC and
screen. The optimal solution would be an embedded chip in the screen similar
to High-bandwidth Digital Content Protection (HDCP)1, the encryption of HDMI
between DVD-players and televisions.

The setup with a development board could provide trusted output but this is not
malware tolerant as malware on the development board compromises confiden-
tiality. To overcome this, we will use a special one-way cable which prevents
data exfiltration from the development board. Crafting such a cable can be accom-
plished by cutting the “read” wire of e.g. a COM cable. Assuming the development
board does not have any other interfaces, an adversary cannot return the captured
plaintext.

Our architecture is sketched in Fig. 5.

Figure 5: Confidential Output Setup

Our setup for confidential output includes a development board (e.g. raspberry pi) that controls the

screen and is connected to the PC via a one-way cable (write-only). This way, the PC can send

encrypted output to the screen or rather the development board. The one-way cable prevents an

attacker who controls the development board to exfiltrate plaintext.

3.1.2 Protecting Commands in Industrial Control Systems

Instead of raising the complexity of Smart-Guard to handle advanced cases, we
could also apply it in simpler ways. Since authentication and integrity work better
than confidentiality, we could utilise it to protect commands for ICSs.

Commands usually do not require confidentiality but integrity and authentication
are important. For Smart-Guard this means we could only execute the shared sig-
nature and do not require trusted output or encryption.

We are currently investigating where this is applicable in ICSs.
1The HDCP standard is vulnerable to retrieval of the master key. [3]
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3.1.3 Password Authentication

Another possibility to develop Smart-Guard would be to focus on password inputs.
We could suspend trusted output since passwords are not displayed and improve
the shared encryption between keyboard and smart-card. Integrity is not needed
and could be omitted for performance.

An issue, however, is how to turn it on or off. McCune et al. [14] suggested to
use a certain key combination like “@@” to start the service. Another possibility
is to use a specific app or a plugin to activate the smart-card and password input.
Each time the user wants to authenticate to a service, he or she would launch the
authentication program which activates the smart-card and terminates with line-
endings.

3.2 Trusted Execution

In addition to improving Smart-Guard, we decided to explore TrustZone in more
details for various reasons. The vendor model of ARM allows multiple manu-
facturers to implement ARM architectures which results in different chips being
available. Some of the TrustZone implementations leave the cryptographic key
unset which enables administrators to set own keys. By that, the software environ-
ment is controlled locally instead of trusting a third party. This is different to the
TPM chip and presumably SGX where the vendor sets and controls this key. Thus,
the ARM architecture is less dependent and enables a more distributed trust model.

We already purchased a FriendlyARM Mini 6410 SBC board as this apparently has
no key set. [20] We identified three existent TrustZone operating system imple-
mentations which we would like to explore:

Table 1: TrustZone Operating Systems

Operating System Developer Code

Genode [6, 8] Genode Labs open source
T6 [13] Li et al. open source
SierraTEE [17, 18] Sierraware closed source

Genode seems to be most promising Operating System (OS) as it is implemented
as a microkernel, separating kernel and OS services. The services run unprivileged
in the normal world of TrustZone independent from the kernel in the secure world.
This separation matches to the idea of distributing trust in malware tolerance. For
the ICS proxy the normal world could serve for untrusted tasks like testing com-
mands while the secure world is protecting critical resources as e.g. the network
card.

10
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4 Timetable

Table 2: Milestones

2014-03-14 • Start
2014-05-19 • Report 1
2014-06 • Literature review
2014-09-20 • Report 2
2014-10 • Explored scenario “storage” under two assumptions
2014-12 • Idea: double encryption [Former: Develop a mechanism

to only display needed information]
2015-01 • Researched formal representation of distributed systems,

Idea: Trusted input (“sign-what-you-type”)
2015-02/-03 • Report 3: Thesis proposal
2015-05 • Expanded trusted input idea, verification with ProVerif
2015-06 • Paper 1: Smart-Guard
2015-07 • Presentation at CryptoForma Workshop (CSF 2015)
2015-08 • Researched TrustZone (papers, OS, FriendlyARM board)
2015-09-20 • Report 4
2015-10 • Improve Smart-Guard, rework paper
2015-11 • Examine TrustZone in depth; goal: Trusted Execution,

Multi Party Computation
2016-02 • Paper 2: TrustZone for ICS
2016-04-03 • Report 5
2016-04 • Possibly: examination of Intel SGX; further use cases of

TrustZone
2016-07 • Paper 3: TrustZone/Intel SGX
2016-07 • Begin writing the dissertation
2016-10-02 • Report 6
2017-03-13 • Planned submission

2017-04-09 • Report 7
2017-10-08 • Report 8
2018-03-13 • Submission deadline
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5 Conclusion

In our future work, we will further develop Smart-Guard and experiment with
TrustZone. We will concentrate on protecting company assets, password authenti-
cation, and messaging.
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Appendices

Table 3: Attended Workshops

Date Workshop/Conference Location
7th May 2014 • Google Hack Day

(Certificate
Transparency)

Google London

19th-23rd May 2014 • Academic Writing
Seminar

University of Birming-
ham

27th-28th May 2014 • CryptoForma 2014 University of York
14th-18th Jul 2014 • Enterprise Summer

School
University of Birming-
ham

23rd-24th Jul 2014 • Publishing Academic
Journals, Editing your
writing

University of Birming-
ham

22nd Oct 2014 • Time Management University of Birming-
ham

Oct 2014 - Jan 2015 • Research Skills Seminar University of Birming-
ham

18th Nov 2014 • Speed Reading University of Birming-
ham

24th Nov 2014 • Note Taking University of Birming-
ham

2014 • Cryptography 1 University of Stanford
(Coursera)

2014 - 2015 • Writing in the Sciences University of Stanford
(Coursera)

14th-15th Jan 2015 • CryptoForma 2015 University of Kent
13th July 2015 • CryptoForma Workshop

at CSF 2015
University of Verona

31th Aug-5th Sept 2015 • FOSAD Summer
School 2015

University Residential
Centre of Bertinoro
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